Effect of silver nanoparticles on the standard soil arthropod Folsomia candida (Collembola) and the eukaryote model organism Saccharomyces cerevisiae
نویسندگان
چکیده
BACKGROUND Because of their antimicrobial properties, silver nanoparticles (AgNPs) have been widely used and have come into contact with the environment. In the present work, an effect of AgNPs on a standard soil organism, Folsomia candida, was studied (in comparison to silver nitrate) focusing on molecular and cellular alterations as ecotoxicological endpoints. RESULTS At the molecular level, an up-regulation of metallothionein-containing protein (MTC) mRNA in AgNP-treated groups indicated toxic heavy metal stress effects caused by the release of silver ions from AgNPs, which is similar to animal groups treated with silver nitrate. Alteration of the steady-state level of glutathione S-transferase (GST) mRNA was detected in animal treated with AgNPs and AgNO3. At the cellular level, the relation between GST activity and the size of the glutathione (GSH) was examined. Change of GST activity from different animal groups was not significant, whereas the GSH pool (reduced and oxidized forms) decreased with increasing concentration of AgNPs. In order to obtain direct evidence whether AgNPs cause oxidative stress, treated animals were incubated with the non-fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). A fluorescence signal was observed in both AgNPs- and AgNO3-treated groups pointing to the production of reactive species (RS). Since RS formation in F.candida is difficult to quantify, yeast strain BY4742 (wild-type) and mutants lacking of oxidative stress-related protective enzymes were exploited as a further eukaryote model organism. AgNPs and AgNO3 were found to also affect growth of yeast and induced oxidative stress. CONCLUSIONS An effect of AgNPs on Collembola and yeast strains is similar to the one from AgNO3. However, AgNPs is less toxic due to the slow release of silver ions. In summary, the toxic effect of AgNPs on F. candida is caused by the combination of the release of silver ions from AgNPs and the formation of reactive species.
منابع مشابه
Green synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae
Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...
متن کاملAg Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola)
The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cel...
متن کاملCollembola Reproduction Decreases with Aging of Silver Nanoparticles in a Sewage Sludge-Treated Soil
Silver nanoparticles (AgNP) are integrated into various products due to their antimicrobial characteristics and hence, the application of AgNP is increasing. During production, use and disposal AgNP are emitted and enter the environment via several pathways. Soils are considered a major sink of AgNP. The aim of the present study was to determine the toxic effect of AgNP on Folsomia candida repr...
متن کاملAntifungal activity of silver nanoparticles on some of fungi
In this study, we investigated the antifungal effects of silver nanoparticles (Ag-Nps) on Candida albicans (ATCC 5027), Saccharomyces cerevisiae (ATCC 5027). Investigating method by using Minimum Inhibitory Concentration (MIC) technique, some of drugs including Amphotericin B, Fluconazole and synthesized Ag-Nps have been obtained on the fungi and the changes on membrane reactions of yeasts have...
متن کاملSaccharomyces cerevisiae var. boulardii as a eukaryotic probiotic and its therapeutic functions
Fuller, in 1989, described probiotic microorganisms as “a live microbial feed supplement,which beneficially affects the host animal, by improving its intestinal microbial balance”.Saccharomyces cerevisiae var. boulardii (S.boulardii) is an accurate probiotic yeast idol.The detection and budding of S.boulardiiis firmly related to the impression of healthinessto promote microorganisms from foodst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2016